光通信、映像伝送ビジネスの実務者向け専門情報サイト

光通信ビジネスの実務者向け専門誌 - オプトコム

有料会員様向けコンテンツ

5G向けミリ波フェーズドアレイ無線機を開発【東京工業大学・NEC】

モバイル/無線 無料

安価な集積回路を用いて高精度指向性制御を実現

 NECは6月3日、東京工業大学の岡田健一教授と共同で第5世代移動通信システム(5G)に向けたミリ波帯フェーズドアレイ無線機を開発したと発表した。5Gでは従来のマイクロ波帯の周波数にあわせて、ミリ波帯の周波数の利用が計画されている。ミリ波帯用の5G無線機ではアレイ状に配置したアンテナへ入出力する高周波信号の位相を制御することにより、アンテナの指向性パターンを制御する。従来は高精度な指向性の制御のために大規模な装置が必要であったが、指向性パターンを劣化させる要因になっている位相および振幅のばらつきを補償できるコンパクトな回路を新たに提案し、無線機とともに集積化することに成功した。
 この回路の活用により位相0.08度と極めて高精度にアンテナ素子の信号を制御することができる。無線機は安価なシリコンCMOS(相補型金属酸化膜半導体)プロセスで製作した。この技術は、5G向けの各種無線通信機器に搭載可能で、ミリ波帯の5G普及を加速させる成果といえる。
 研究成果は6月2日から米国ボストンで開催されている国際会議RFIC(IEEE Radio Frequency Integrated Circuits Symposium <米国電気電子学会・無線周波数集積回路シンポジウム>2019)で発表。また、この発表論文は最優秀論文賞を受賞した。

開発の背景

 5Gの運用初期にはおもに3GHzから6GHzの低い周波数を用いたサービスが展開される。これらの周波数帯ではほかの無線システムなどの存在により、限られた帯域幅となるため、通信速度もその帯域幅に応じた限界が存在する。
 また従来、携帯電話に用いられている3GHz以下の比較的低い周波数の特性として、伝搬損失は少ないものの、波長が長く電波が広がりやすい物理的性質のため、通話やショートメッセージサービス(SMS)、Webブラウジングなどをメインとする限られた通信アプリケーションには扱いやすいが、今後、大きな需要が見込まれているビームを絞った高速無線通信の実現が難しい。また複数の端末間の電波の干渉により、スタジアムなどの極めて多くの端末を収容するようなキャパシティ増大への対応には困難が伴う。
 一方、5Gにおけるチャレンジとして、より広い帯域を確保し、かつ指向性の高いアンテナの実現可能性を持つ高い周波数領域の電波資源、すなわち従来、用いられているより10倍以上高い周波数帯であるミリ波を用いる無線通信技術の導入が期待されている。特に、北米などではミリ波帯の39GHz帯の利用が検討されており、従来の100倍以上速い10Gbpsのデータ伝送速度の実現が目標とされている。

5Gに向けた課題

 5Gなどで用いられるミリ波の通信は波長が短いことで、アンテナ素子を小さくすることができる利点がある一方で、伝搬損失が従来の10倍以上大きいことが問題となる。そこで複数のアンテナ素子を調和して動作させ、アンテナにおける電波の放射の指向性を高め、なおかつ、その放射方向を電気的に制御する(指向性を高める)ビームフォーミングの技術に対応したフェーズドアレイ無線機が必要になる。
 フェーズドアレイ無線機はアンテナと同じ数のトランシーバで構成される。多数のトランシーバ・アンテナのそれぞれの信号の位相および振幅を制御することで、通信を行う端末方向で信号が強め合い、逆にそのほかの端末方向には信号を打ち消しあう特性を持たせることができる。これにより、高い指向性(高いEIRP)による高速通信や通信距離の増大、さらには、不要な干渉の低減によるキャパシティの増大が可能になる。
 しかしながら、それぞれのアンテナ素子から出力される信号の位相や振幅強度の特性のわずかなばらつきが発生すると、このビームフォーミングの効果を著しく低減させてしまう。そのため、特性のばらつきをきわめて低く抑える必要があり、ミリ波の帯域でそれを低コストで実現できる補償技術の確立が望まれていた。

研究成果

 今回の研究成果はミリ波トランシーバのビームフォーミングに必要となる、信号の振幅や位相の検出・補償の方式および回路を新たに提案し、トランシーバを試作、実証することで達成した。
 通常、信号の振幅および位相の高精度の補償には高速高分解能のAD(アナログ・デジタル)変換器が必要とされ、特にミリ波の広帯域信号を扱うことができるような超高速・高分解能AD変換器の実装が困難だった。今回の研究ではあらかじめ前信号処理を加えることで、比較的低速度のAD変換器とカウンターによる位相検出回路により、高精度な振幅・位相の検出を可能とした。
 それにより、これまで位相検出に必要だった高精度アナログ量の検出を、CMOS回路の極めて高い時間分解能に変換した上で、デジタル的に処理することが可能となった為、コンパクトな回路で高精度な補償機構内蔵の5G向けミリ波帯フェーズドアレイ無線機を実現できた。
 このフェーズドアレイ無線機を最小配線半ピッチ65nm(ナノメートル)のシリコンCMOSプロセスで試作し、12平方mmの小面積に4系統のフェーズドアレイ無線機を搭載した(図1)。現在、5G向けに利用が開始されている28GHz帯とあわせて、今後39GHz帯の利用の増大が想定されている。開発したCMOS無線送受信チップは、39GHzの周波数帯で利用でき、その飽和出力電力は15.5dBmであった。

図1:5G向け39GHz帯フェーズドアレイ無線機

 伝送実験のため、CMOSチップを搭載した評価基板(図1)を作成した。電波暗室内で、1mの距離を隔てて2台のモジュールを対向させ、提案した補償回路を動作させてデータ伝送試験を実施した。その結果、補償回路の実力は位相で0.08度、振幅で0.04dBと極めて優れた特性を示し、各アンテナの位相振幅を制御することにより、電波の放射方向を0.1度の精度で調整可能であることを確認した。また、最大となる0度方向でのEIRPは53dBmだった。
 固定のビームフォーミング、400MHzの256QAMの5GNR信号でEVM=-30dBを達成した。消費電力は1チップあたり送信時1.5W、受信時0.5Wだった。

今後の展開

 開発した無線機は、フェーズドアレイに用いられるCMOSチップの省面積化を実現し、5G無線機の小型・低コスト化を牽引する。今後、5G向け通信機器での利用をターゲットとして2020年頃の実用化を目指すという。また、ビームフォーミングの鍵となる多数のアンテナ・トランシーバーの補償技術は、5Gに限らず様々な無線通信に対して適用可能であり、通信機器の小型・低コスト化に有効な技術と考えられる。